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Abstract. The low-order moments of the one-phonon spectral function of a crystal are shown
to be related directly to the self-energy of the phonon. These relationships are generalizations
of the Placzek sum rule and of a well-known high-temperature extension. The rules can be
used to simplify a lattice-dynamical calculation of the moments, or, if the moments have been
calculated by some other method, such as a Monte Carlo simulation, the rules can be applied
in the other direction to yield information about the self-energy of the mode. This information
can, in turn, be used to test the quality of a lattice-dynamical approximation. As an illustration,
the rules are applied to transverse and longitudinal zone-boundary phonons in argon at 81 K.

1. Introduction

There have recently been several applications of a moment-expansion method to the
calculation of spectral functions in anharmonic crystals [1–5]. The method is potentially
useful in providing a route for the calculation of time-dependent properties in a quantum
mechanical system, since the moments can be expressed in terms of equal-time averages,
which can be calculated by a variety of methods. The limitations of the method are still
being explored and many of the calculations to date have been performed for classical
systems, so that a comparison could be made with molecular dynamics simulations. In the
classical limit, there is a simple sum rule for the second moment of the spectral function
[1], closely related to the Placzek sum rule [6]. In our own lattice-dynamics-based work,
we found this sum rule to provide a very useful check on the results [5]. One way to derive
either of these sum rules is to expand at high frequencies a general relationship between
the spectral function and an associated Green function, and to pick out the one term in the
expansion that has a simple value. While the other terms in the expansion do not have
such well-defined values, they do provide additional relationships between other moments
of the spectral function and special values of the self-energy of the phonon, such as the
instantaneous contribution to the self-energy. These relationships can be used to provide
additional checks on the calculation of the spectral function, or to permit direct calculation
of the moments. Conversely, if the moments are known from some other type of calculation,
such as a Monte Carlo simulation, their values can be used to infer accurate values of certain
features of the self-energy. These can then be compared with the values calculated in some
approximation, such as the self-consistent phonon theory.

In section 2, we define the spectral function and its moments as we have used them, and
in section 3 we review the relationship between the spectral function and the one-phonon
Green function. A number of generalized sum rules are then derived, in section 4, and an
application to a model of argon is made in section 5. The results are discussed in section 6.
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2. The spectral function

Much of the importance of the one-phonon spectral function stems from the fact that it
is closely related to the inelastic scattering cross section for slow neutrons. For a one-
dimensional monatomic crystal we can define a spectral functionS(Q,ω) by

S(Q,ω) = 1

N

∑
ij

eiQ[R(i)−R(j)]
∫ ∞
−∞

eiωt 〈ui(t)uj (0)〉 dt

and this represents the one-phonon contribution to the neutron scattering cross section,
except that the Debye–Waller factor has been neglected. The sum is over the atomsi and
j , with equilibrium positionsR(i) andR(j) and there areN atoms.h̄Q is the momentum
transfer and ¯hω is the energy transfer. The atomic displacements areui(t) and uj (0).
In three dimensions, the momentum transfer, and the atomic positions and displacements
all become vectors. This complicates the notation but does not bring in any insuperable
difficulties. We shall therefore usually restrict the equations to the one-dimensional case.
There is a possible difficulty for a one-dimensional crystal, that the expectation value in
the above expression does not exist for the casei = j . For this reason, Cuccoliet al [1]
initially considered a slightly different spectral function defined in terms of differences of
displacements. ForQ not equal to a reciprocal-lattice vector, their function reduces to

C(Q,ω) = 1

N

∑
ij

eiQ[R(i)−R(j)]
∫ ∞
−∞

eiωt 〈ui(t)uj (0)+ uj (0)ui(t)〉 dt.

It is thus a symmetrized version of the spectral function. In fact

C(Q,ω) = S(Q,ω)+ S(−Q,−ω)
and, for the case in which every atom is on a centre of symmetry, there is inversion symmetry
in Q, so

C(Q,ω) = S(Q,ω)+ S(Q,−ω).
Additionally, in the classical limit,S is an even function ofω and thenC is just twiceS.

The moments of the spectral functionC are defined by

µn =
∫ ∞
−∞

ωnC(Q,ω) dω. (1)

The moments are functions ofQ, but that is not shown explicitly here. SinceC is an
even function of frequency, the odd moments are all zero. In the classical limit, the second
moment satisfies the sum rule [1]

µ2 = 4πkBT

m
(2)

wherekB is Boltzmann’s constant,T is the temperature, andm is the atomic mass.
The spectral function is related to the moments through a continued-fraction represent-

ation [7]:

C(Q,ω) = R
{

1

π
µ0/{z + δ1/[z + δ2/(z + · · ·)]}

}
z=iω

where

δ1 = µ2/µ0

δ2 = µ4/µ2− µ2/µ0

δ3 = [µ6/µ2− (µ4/µ2)
2]/δ2

and so on. The termination of the continued fraction has been discussed elsewhere [1–3].
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3. Green function formalism

A powerful method for calculating anharmonic contributions to phonon spectral functions
is the diagrammatic perturbation expansion for the imaginary-time ordered Green function
[8–11]. The Green function is

Gλ(u) = 〈TAλ(u)A−λ(0)〉.
Hereλ is used to label the normal modes. In a one-dimensional crystal, the label can be the
wave numberq. In a three-dimensional crystal,q becomes a vector, and an additional label,
j , is used to label the branches.Aλ andA−λ are combinations of creation and destruction
operators.T is a time-ordering operator andu is a complex variable whose real component
corresponds to an inverse temperature and whose imaginary component is a time divided
by h̄. TheAλ-operators are related to the atomic displacements by

ui(t) =
√

h̄

2Nm

∑
λ

eiqR(i)

√
ωλ

Aλ(t)

in one dimension, or by

uiα(t) =
√

h̄

2Nm

∑
λ

eα(λ)√
ωλ

eiq·R(i)Aλ(t)

in three dimensions. In this case,α labels the Cartesian axes andeα(λ) is an eigenvector
component.G(u) is periodic along the imaginary-time axis for values ofu between−β and
0, whereβ is 1/kBT . It can therefore be written as a Fourier series, with coefficients defined
for an infinite but discrete set of imaginary frequencies. The expression for the coefficients
can then be analytically continued to the complex-frequency plane. For a harmonic crystal,
the Green function,gλ(z), is

gλ(z) = 1

βh̄

2ωλ
ω2
λ − z2

whereωλ is the harmonic frequency andz is a (complex) applied frequency. In an an-
harmonic crystal the Green function can be cast in a similar form, but involving a complex,
frequency-dependent, self-energyDλ(z), as

Gλ(z) = gλ(z)

1− gλ(z)Dλ(z)
= 1

βh̄

2ωλ
ω2
λ + 2ωλ[1λ(z)− i0λ(z)] − z2

. (3)

In the second form, the self-energy has been written in terms of az-dependent shift and
width:

Dλ(z) = βh̄[−1λ(z)+ i0λ(z)].

The form given above for the Green function is a result of summing all diagrams containing
the proper self-energy repeated any number of times:

Gλ(z) = gλ(z)+ gλ(z)Dλ(z)gλ(z)+ gλ(z)Dλ(z)gλ(z)Dλ(z)gλ(z)+ · · · . (4)

While this is a more primitive equation, it will be useful for the development of the sum rules.
In the general three-dimensional case, the equation for the Green function is complicated by
the coupling of contributions from different polarizations. In the one-dimensional case, and
in high-symmetry situations in three dimensions, this does not occur and we shall ignore it.

Associated with the Green function, we can define a simple correlation function

Fλ(t) = 〈Aλ(t)A−λ(0)〉
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and its Fourier transform

ρλ(ω) = 1

2π

∫ ∞
−∞

eiωtFλ(t) dt.

The Fourier transform of the Green function can then be shown to be [10]

Gλ(z) = 1

βh̄

∫ ∞
−∞

ρλ(ω)
1− e−βh̄ω

ω − z dω. (5)

The generalized sum rules all follow from this equation.

4. Sum rules

The sum rules are obtained by expanding each side of equation (5) in inverse powers of
z, and equating the coefficients on the two sides. The harmonic Green function has an
expansion

gλ(z) = −2ωλ
βh̄

{
1

z2
+ ω

2
λ

z4
+ ω

4
λ

z6
+ · · ·

}
(6)

and the proper self-energy has an expansion

Dλ(z) = D(0) +D(−2)/z2+ · · · = −βh̄{1(0) +1(−2)/z2+ · · ·}. (7)

The first term on the right-hand side arises because there is, in general, an instantaneous
contribution to the self-energy. The second form above involves only the real part,1λ(z),
because the imaginary part has no instantaneous contribution and, at least in all of the
approximations that we shall consider, is cut off at some finite frequency and therefore
has no dependence as 1/z2. For simplicity, theλ-dependence of the terms on the right
has not been shown. The distinction between the instantaneous shift,1(0), and the shift at
zero applied frequency,1(0), is important. When the expansions equations (6) and (7) are
substituted in equation (4), the first three, non-vanishing, terms give∫ ∞

−∞
ωρλ(ω)(1− e−βh̄ω) dω = 2ωλ (8)∫ ∞

−∞
ω3ρλ(ω)(1− e−βh̄ω) dω = 2ωλ[ω

2
λ + 2ωλ1

(0)]∫ ∞
−∞

ω5ρλ(ω)(1− e−βh̄ω) dω = 2ωλ[{ω2
λ + 2ωλ1

(0)}2+ 2ωλ1
(−2)].

Also, by settingz = 0, we obtain an additional useful relationship:∫ ∞
−∞

1

ω
ρλ(ω)(1− e−βh̄ω) dω = 2ωλ

ω2
λ + 2ωλ1(0)

(9)

where1(0) is the value of1 at zero applied frequency.
The spectral functionsS(Q,ω) andC(Q,ω) are proportional to the spectral density

ρλ(�), provided that the wave vector of the normal mode differs fromQ only by a
reciprocal-lattice vector. The relationships can be found by substituting the expression
for the atomic displacements into the definition of the appropriate spectral function, as

ρλ(ω) = mωλ

πh̄
S(Q,ω) = mωλ

πh̄

C(Q,ω)

1+ e−βh̄ω
.
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Clearly, the sum rules given above can also be written in terms ofS(Q,ω) or C(Q,ω).
For example, equation (8) gives∫ ∞

−∞
ωS(Q,ω)(1− e−βh̄ω) dω = 2πh̄

m∫ ∞
−∞

ωC(Q,ω) tanh

(
βh̄ω

2

)
dω = 2πh̄

m
.

The other relationships can be transformed in a similar way.
There are several ways to develop simpler, and more useful, relationships. The spectral

functionsS(Q,ω) andρλ(ω) satisfy the detailed-balance condition, e.g.

S(Q,−ω) = e−βh̄ωS(Q,ω).

From this it is simple to show that, for odd values ofn,∫ ∞
−∞

ωne−βh̄ωS(Q,ω) dω = −
∫ ∞
−∞

ωnS(Q,ω) dω

and hence that∫ ∞
−∞

ωnS(Q,ω)(1− e−βh̄ω) dω = 2
∫ ∞
−∞

ωnS(Q,ω) dω.

When these results are used, the sum rules forS(Q,ω) become∫ ∞
−∞

ωS(Q,ω) dω = πh̄

m
(10)∫ ∞

−∞
ω3S(Q,ω) dω = πh̄

m
[ω2

λ + 2ωλ1
(0)]∫ ∞

−∞
ω5S(Q,ω) dω = πh̄

m
[{ω2

λ + 2ωλ1
(0)}2+ 2ωλ1

(−2)]∫ ∞
−∞

1

ω
S(Q,ω) dω = πh̄

m

1

ω2
λ + 2ωλ1(0)

.

The last of these comes from the equation for zero frequency, equation (9). Equation (10) is
called the Placzek sum rule [6]. The original paper does not emphasize this result. Useful
discussions have been given by Rahman, Singwi, and Sjolander [12] and by Ambegaokar,
Conway, and Baym [13].

This line of development is not useful for the functionC(Q,ω), which is an even
function, so its odd moments are zero. However, we can get a useful simplification for
this case by taking the high-temperature limit. This leads directly to expressions for the
momentsµn defined in equation (3), in the form

µ0 = 4π

βm

1

ω2
λ + 2ωλ1(0)

µ2 = 4π

βm

µ4 = 4π

βm
[ω2

λ + 2ωλ1
(0)]

µ6 = 4π

βm
[{ω2

λ + 2ωλ1
(0)}2+ 2ωλ1

(−2)].
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The second of these is equation (2). Of course, a similar simplification is obtained in the
high-temperature limit for the moments of the other spectral functions. The corresponding
expressions for the related quantitiesδn are

δ1 = ω2
λ + 2ωλ1(0)

δ2 = 2ωλ{1(0) −1(0)}
δ3 = 1(−2)

1(0) −1(0)
and, in addition,

µ4/µ2 = ω2
λ + 2ωλ1

(0) (11)

µ6/µ2− (µ4/µ2)
2 = 2ωλ1

(−2). (12)

These results can be useful applied in either direction. We originally developed them to
simplify the calculation of the moments from a given approximation for the self-energy.
It is much more convenient, and more accurate, to use these results than to find the
moments of the spectral function numerically. However, their usefulness may be greater
as a test of approximate theories. For example, equation (11) involves only the instant-
aneous contribution to the self-energy. This should be easier to calculate than the complete
expression. The value ofµ4 can be calculated in a simulation, andµ2 is given exactly,
so a very accurate estimate can be obtained of the complete instantaneous self-energy, for
comparison with approximate theories.

Our results are all presented in terms of the real part of the self-energy, which is
interpreted as a shift. However, the shift and width functions are related by

1(z) = 1(0) − 1

π

∫ ∞
−∞

0(ω)

ω − z dω.

From this we obtain the relationships

1(0)−1(0) = − 1

π

∫ ∞
−∞

0(ω)

ω
dω

and

1(−2) = 1

π

∫ ∞
−∞

ω0(ω) dω.

It is thus possible to express the moments in terms of either the shift or the width.
Two other results are easily obtained from the formalism developed here. The mean

square displacement components of an atom are

〈uα(i)uβ(i)〉 = h̄

2Nm

∑
λ

eα(λ)eβ(λ)

ωλ
〈Aλ(0)A−λ(0)〉 = h̄

2Nm

∑
λ

eαeβ

ωλ

∫ ∞
−∞

ρλ(ω) dω.

We have again neglected polarization mixing. In the high-temperature limit, equation (9)
becomes ∫ ∞

−∞
ρλ(ω) dω = 1

βh̄

2ωλ
ω2
λ + 2ωλ1(0)

.

In this limit, therefore, the mean square displacement elements are

〈uα(i)uβ(i)〉 = 1

βNm

∑
λ

eα(λ)eβ(λ)

ω2
λ + 2ωλ1(0)

.

This is of exactly the harmonic form, except that the frequency is shifted by the shift
calculated for zero applied frequency. This result has been shown explicitly by Shukla and
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Hübschle [14] for a number of terms in the perturbation expansion. It holds as long as the
Green function can be written in the form of equation (3).

A related sum arises in the determining equation forµ0. This moment is given by [1]

µ0 = 4π

N

∑
ij

cos(Q · [R(i)−R(j)])〈uiuj 〉

where the value ofQ and, in three dimensions, the polarization vectors, control the value
of λ. Sinceµ2 has an exact value, the ratioδ1 can be found onceµ0 has been calculated,
in a simulation, for example. We now know thatδ1 is the renormalized squared frequency
at zero applied frequency. Zhonget al recently made such calculations for a model of
a ferroelectric crystal displaying a soft mode [15]. They presented their results as an
approximate calculation of the soft-mode frequency, but we see that it has a quite precise
meaning.

Table 1. Monte Carlo results for the moments for the longitudinal (L) and transverse (T) modes
at the [100] zone boundary, in argon at 81 K, based on reference [3]. The unit forµn is m2 s−n.

Moment L T

µ0 (0.215± 0.002)× 10−20 (0.478± 0.009)× 10−20

µ2 0.235 296× 106 0.235 296× 106

µ4 (0.359± 0.004)× 1032 (0.172± 0.002)× 1032

µ6 (0.7406± 0.0009)× 1058 (0.2357± 0.0004)× 1058

5. Numerical implementation and results

We present here an application of the sum rules to a realistic three-dimensional model of
argon. We have previously studied this model using a variety of techniques [3, 16, 17], so
many numerical results are available. The model assumes a pair potential derived by Aziz
and Chen [18]. The forces are taken to act between an atom and three shells of neighbours.
In this work, as in reference [17], we neglect three-body forces. Calculations are made for
a temperature of 81 K and at the experimentally observed lattice spacing of 5.465 Å. The
calculation of the low-order moments of the spectral functions for both longitudinal and
transverse modes was reported in reference [3]. Values of the moments up toµ6 are given
in table 1.µ8 was also calculated in reference [3], but we do not use that value here.

For comparison purposes, we have calculated several approximations to the moments
using anharmonic perturbation theory and self-consistent phonon theory. To show clearly the
magnitude of the effects, we note that, for a harmonic crystal,µ4/µ2 andδ1 are each equal
to ω2

λ, andδ2 is zero. In the lowest-order perturbation theory, there are two contributions to
the phonon self-energy [9, 11]. There is an instantaneous term, which we shall write as14,
arising in first order from the quartic anharmonicity, and there is a frequency-dependent term,
133(ω), arising from the cubic anharmonicity in second order. Expressions for the two shifts
have been given many times. Both terms contribute to the shift at zero frequency, but only
the cubic term contributes to1(−2). A long-standing difficulty in analysing experimental
results is that there can be substantial cancellation between the different contributions to the
shifts. The moment analysis offers the possibility of disentangling the various contributions.
We make the identifications

µ4/µ2 ' ω2
λ + 2ωλ14
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δ2 = 2ωλ{1(0) −1(0)} ' −2ωλ133(0)

δ1 = ω2
λ + 2ωλ1(0) ' ω2

λ + 2ωλ(14+133(0))

µ6/µ2− (µ4/µ2)
2 = 2ωλ1

(−2) ' 2ωλ1
(−2)
33 .

The quantity on the left-hand side of the last of these is proportional toδ3, but is more
accurately found as written. We can thus test separately the quartic shift, and the cubic shift
at zero frequency and in the limit of very large frequency.

Table 2. Various approximations to the phases, using anharmonic perturbation theory (PT), or
self-consistent phonon theory (SC1). All values are in units of 1026 s−2 except for the bottom
line in each group, which is in units of 1052 s−4.

Longitudinal

Monte Carlo Harmonic PT SC1

µ4/µ2 1.53± 0.02 0.851 1.658 1.430
δ2 0.43± 0.02 0.0 0.450 0.362
δ1 1.09± 0.01 0.851 1.208 1.068
µ6/µ2 − (µ4/µ2)

2 0.82± 0.05 0.0 0.364 0.467

Transverse

Monte Carlo Harmonic PT SC1

µ4/µ2 0.73± 0.01 0.442 0.825 0.693
δ2 0.24± 0.01 0.0 0.256 0.212
δ1 0.49± 0.01 0.442 0.569 0.481
µ6/µ2 − (µ4/µ2)

2 0.47± 0.01 0.0 0.199 0.262

A second, more sophisticated, theory is self-consistent phonon theory (SC1) [19]. In
this theory, an infinite class of contributions to the instantaneous self-energy is summed
to give a renormalized frequency. At this level of approximation, there are no frequency-
dependent contributions. However, we can use the renormalized frequencies and the smeared
derivatives of the potential to evaluate the cubic contribution to the self-energy, using, apart
from this, the same expression as for the perturbation theory. This is not a consistent
procedure, but certainly gives the largest missing contribution. In this case, we make the
identifications

µ4/µ2
∼= ω2

λ,SC1

δ2
∼= −2ωλ,SC1〈133(0)〉

δ1
∼= ω2

λ,SC1+ 2ωλ,SC1〈133(0)〉
µ6/µ2− (µ4/µ2)

2 ∼= 2ωλ,SC1〈1(−2)
33 〉.

The angular brackets indicate that smeared force constants and SC1 frequencies are used
in the evaluation of the cubic shift. The results of the three calculations are shown in
table 2. It can be seen that the harmonic values are completely inadequate. Argon is close
to melting at 81 K and the anharmonic terms are large. The perturbation theory results
are an improvement but are still not satisfactory. Each of the contributions14 and133(0)
is overestimated. The results of the self-consistent calculation are closer to the simulation
values in almost all cases. The instantaneous contribution is now underestimated. The SC1
estimate ofδ1 is very accurate. The worst agreement is in the values of1(−2), shown in
the last line of each group. All of the lattice-dynamical estimates of this term are too small.
We believe that this reveals a genuine shortcoming of the theories.
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6. Summary and conclusions

We have identified a number of relationships between the low-order moments of the spectral
function of a phonon and specific features of its self-energy. The simplest use to be made
of these is in a lattice-dynamics-based calculation of the moments. It is simpler and more
accurate to use these formulae than to generate the whole spectral function and then to
integrate numerically to find the moments.

A much more valuable application is to use the formulae in the reverse direction, to
isolate specific parts of the self-energy from values of the moments found in a simulation.
It has been recognized for many years that the different contributions to the self-energy tend
to cancel and that this makes a comparison with experiment a difficult and over-sensitive
test [11, 20, 21]. The formulae given here allow the separation of the instantaneous and
frequency-dependent parts of the self-energy, at least at zero frequency and in the high-
frequency limit. It will be interesting to make comparisons for a variety of materials, such
as alkali halides, to see how the different contributions are reproduced by approximate
theories.

The comparison with analytical theories presented here already shows one shortcoming
that we had not anticipated. The values of the shift in the high-frequency limit,1(−2),
given by perturbation theory and self-consistent phonon theory are both too small. Both
calculations include only processes where one phonon decays into two intermediate phonons.
Processes involving three or more intermediate phonons would also contribute to1(−2), and
we believe that it is the neglect of these terms that is causing the discrepancy.
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